SurveyMonkey si presta a gestire qualsiasi caso d'uso ed esigenza. Esplora il prodotto e scopri cosa può fare per te.

Analisi basate sui dati da un leader globale nelle indagini online.

Integrazione con oltre 100 app e plug-in per lavorare meglio.

Moduli online personalizzati per raccogliere dati e pagamenti.

Sondaggi migliori e dati in tempi rapidi grazie all'IA integrata.

Soluzioni mirate per qualsiasi esigenza di ricerca di mercato.


Misura soddisfazione e fedeltà al marchio dei tuoi clienti.

Scopri cosa rende felici i clienti per trasformarli in sostenitori.

Acquisisci informazioni utili a migliorare l'esperienza utente.

Raccogli informazioni di contatto da clienti, invitati e altri.

Raccogli e gestisci le adesioni al tuo prossimo evento.

Scopri le preferenze dei partecipanti per migliorare i prossimi eventi.

Scopri come ottenere risultati rafforzando il coinvolgimento.

Raccogli riscontri dai partecipanti per organizzare riunioni migliori.

Usa il feedback dei colleghi per una performance migliore.

Migliora i corsi e i metodi di insegnamento.

Scopri come gli studenti valutano il corso e la sua presentazione.

Scopri cosa pensano i clienti delle tue idee per nuovi prodotti.


Linee guida per l'utilizzo di indagini e dei dati raccolti.

Articoli su indagini, suggerimenti per le aziende e tanto altro.

Tutorial e guide pratiche per l'uso di SurveyMonkey.

Come i migliori brand promuovono la crescita con SurveyMonkey.

3 Natural Language Processing use cases for analyzing survey responses

Say you ran a survey and collected responses from 1,000 individuals.

You’ve included two open-ended questions in your survey and all 1,000 of your respondents answered them, using 15 words each.

Using simple arithmetic, you’ll find that you’ve collected 2,000 open-ended responses (2 * 1,000) that totaled 30,000 words (2,000 * 15).

With such a daunting amount of text to read, how can you reasonably expect to review and identify the key insights from your responses?

The answer to both of these questions involves the use of Natural Language Processing, often referred to as NLP, which is essentially the process of using computers to help understand large amounts of text data.

Throughout this page, we’ll provide an introduction to Natural Language Processing and discuss how to use it to help review your survey results. By the end, you’ll have an idea of how to use Natural Language Processing in your future surveys.

Natural Language Processing is a field where computer programming and machine learning techniques attempt to understand and make use of large volumes of text data.

Natural Language Processing offers hundreds of ways to review your open-ended survey responses. Unfortunately, you don’t have the time to review each of these applications and decide on the best one.

We’ll fast-track your review process by walking you through 3 of the most popular Natural Language Processing use cases.

The word cloud allows you to identify the relative frequency of different keywords using an easily digestible visual.

For example, in a previous study, we’ve asked Americans to describe millennials in a single word. Their responses led to the following word cloud:

Word cloud describing millennials with words like spoiled, lazy, selfish and clueless

The bigger words in the chart appear more often in responses relative to the other words. In this case, these words tend to be negative—e.g. “lazy” and “spoiled.”

Now that you know how it works, you might be asking yourself, “How do word clouds help my survey analysis?”

Here are some of its key benefits:

  • It’s intuitive and easy to comprehend
  • It helps identify overall respondent sentiment and the specific factors that drive it
  • It provides direction for further analysis

But here are some of its drawbacks to consider:

  • It fails to measure each word’s value in and of itself
  • It allows irrelevant words to appear
  • When words appear similar in size, it becomes difficult to differentiate them

TFIDF focuses on how unique a word or a group of words are from a set of responses. It’s calculated as follows:

TFIDF calculation

The closer the number is to 1, the more important the word becomes. What’s the reasoning behind this formula? If more people say something but don’t necessarily say it frequently, it’s easily neglected or missed—despite its value to your analysis. TFIDF solves this challenge by highlighting the most important unique words or group of words.

For example, let’s say we gathered responses from the question: “If you had $1,000 and you could save it, invest it, or use it to pay off bills, what would you do with it?”

We end up finding that many young adults would spend the money on school-related expenses as words like, “tuition” and “buying textbooks” have a high TFIDF rating.

Use TFIDF when you want to…

  • Drill down on the unique words that are used by a large sample of respondents
  • Identify a theme to focus on
  • Easily compare the relevance of a word or a group of words to others

Just keep the following pitfalls in mind…

  • The voices of a few respondents can get buried and neglected
  • If many respondents say something, but say it often, that word or group of words can receive a score that isn’t representative of its significance
  • When something is said by only a few respondents, infrequently, that word or group of words can receive a score that overstates its importance

Topic modeling is an advanced natural language processing technique that involves using algorithms to identify the main themes or ideas (topics) in a large amount of text data. Topic modeling algorithms examine text to look for clusters of similar words and then group them based on the statistics of how often the words appear and what the balance of topics is.

As a result, topic modeling helps you understand the key themes from your survey responses as well as the relative importance of each theme.

Let’s say we asked respondents whether or not they like swimming. We followed up with an open-ended question where the respondent can explain their answer. Our topic model produces the following chart, based on the clusters of similar words that appear in the open-ended responses.

Topic modeling example chart on why people like or dislike swimming

Eight main topics emerge, based on the frequency of word clusters that appeared in our open-ended responses. Since we used a 95% confidence interval, there’s some variability in the weight of each topic, which the lines on either side of the topic represent.

As you can see, the topic clusters that appear for respondents who said they don’t like swimming are negative, while the ones who said they like swimming are positive. In our example above, “exhausting” was the most relevant topic when respondents disliked swimming. Meanwhile, “fun” was the most applicable topic when respondents said they liked swimming.

  • Identifies key topics that drive the respondent’s sentiment in a certain direction
  • Helps you understand each topic’s level of influence
  • Produces an intuitive and easy to understand visual

Here are some of its shortcomings:

  • Doesn’t account for the significance of each topic in and of itself
  • The survey creator specifies the number of topics they’d like to have in advance. This easily leads to human error; choosing an excessive number of topics creates less valuable ones while choosing an insufficient number leaves out potentially important topics
  • Becomes overwhelming and less meaningful if too many key topics are chosen

Deciding on the right application of Natural Language Processing isn’t simple. But choosing between these 3 use cases makes the process much easier. So go forward and embrace your free responses with confidence. You’ll uncover any and all of the key insights they provide.

Elenco dei toolkit

Scopri i nostri toolkit, progettati per aiutarti a sfruttare i feedback per il tuo ruolo o settore.

Scopri le funzioni di SurveyMonkey Enterprise

Gestione del feedback su vasta scala con le funzioni di sicurezza, gli standard di privacy e conformità e le integrazioni di dati di SurveyMonkey.

Scopri come i migliori brand promuovono la crescita con SurveyMonkey

Unisciti ai migliori brand che usano SurveyMonkey per creare prodotti ed esperienze vincenti in grado di favorire la crescita.

Alimenta la tua strategia del marchio sfruttando le informazioni puntuali acquisite con il monitoraggio del marchio

I nostri sondaggi per gestire la salute del tuo brand, aumentarne la notorietà e svilupparne la percezione. Registrati gratis e provali oggi stesso.